ABSTRACTION-BASED REUSE
REPOSITORIES

Grady H. Campbell, Jr.
REUSE REPOSITORIES-89041-N
VERSION 1.0
JULY 1989

iy SOFTWARE
S e PRODUCTIVITY
155-91,37‘_;5‘}‘."": CONSORTIUM

SPC BUILDING
2214 ROCK HILL ROAD
HERNDON, VIRGINIA 22070

©1989 SOFTWARE PRODUCTIVITY CONSORTIUM, INC].
ALL RIGHTS RESERVED

ABSTRACTION-BASED REUSE
REPOSITORIES

REUSE_REPOSITORIES-89041-N
VERSION 1.0
JULY 1989

This paper is partially based on ideas developed while the author was with Seoftware
Architecture & Engineering, Inc., of Arlington, Virginia.

This document may be distributed without restriction.
All complete or partial copies of this document must contain & copy of this page.

STATUS: APPROVALS 2
Working Draft [] Author LA AL | Z for / /00?
. G
For Review % V.P: E , 8’, | ,Sz
Final Arthur Byster)
C.E.O. : X189

son B. Neale, Jr.

t -
This paper will also be px’Zsented at the “AIAA Computers in Aerospace VIi
Conference,” Monterey, California, October 1989,

SOFTWARE PRODUCTIVITY CONSORTIUM
SPC BUILDING
2214 ROCK HILL ROAD
HERNDON, VIRGINIA 22070

© 1989 SOFTWARE PRODUCTIVITY CONSORTIUM, INC.

i

ABSTRACT

A conventional view of a repository for software reuse is as a database of software
components. Reusing a component from such a repository requires extracting candidates
through a search of the database, understanding the candidates and selecting the best match,
and adapting the selection to suit the intended use. These activities are time consuming, none
are guaranteed to produce an acceptable result, and improvements in one can increase the
cost of the others. As an alternative, the concept of an abstraction-based repository is
proposed. An abstraction-based repository is conceived as a taxonomy of abstractions where
each abstraction is a characterization of a family of software components. Reusable
components are obtained by selecting and instantiating a family abstraction guided by
resolution of a set of prescribed design decisions.

iii

TABLE OF CONTENTS

Section Page -
1. IntroducCtiOnviierioennrsronannersansosssnnsassasssrorssnnans 1-1
1.1 OVeIVIEW . otit i ittt e e [P 1-1
2. A Current Model of Reuse Repositoriescovvivsn eaeees 2-1
2.1 Assumptions of the Model oo 2-1
2.2 Problems with the Model e e EEETRRTRR 2-2
3. Conceptua! Foundations of Abstraction-Based Reuse vee3=1
4. Abstraction-based Reuse Repositories e 4-1
5. Supporting Abstraction-Based Reusecoiiaiiiiiianiien 5-1
5.1 Metaprogramimingttt e 5-1
6. Generalizing Existing Software for Reusecoiviiiiiannnnn 6-1
7. Constructing Systems From Componentscciievarorrnienns 7-1
8. Related WWOTK ..o vi vt e ittt ittt ter ettt snaanonreanssnnnas 8-1
9. Future Directioncciiiiniiiin it iieiiionnnsanesstassrasnn 9-1
10. References e P e rraaeaeienney 10-1

Figure No.
Figure 2-1:
Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:

LIST OF FIGURES

Page
Conventional Reuse Repository Model 2-1
Proposed Reuse Repository Modelcoovvineinn. 4-2
Instantiations of a Family P i 4-2
Constructs of a Metaprogramming Notationot 5-2

Sample Family/Instances Descriptiono 5-2

1. Introduction

Software reuse is intuitively attractive as a means to increase software productivity and
reliability. Unfortunately, attaining this promise does not seem imminent’. The effort
required to find and adapt components for new uses seems excessive. This paper attempts to
relate the causes for this to the prevalent model of reuse repositories and suggests an
alternative model that seems to result in effective support for significant reuse when the likely
nature of future uses can be anticipated.

For the purposes of this paper, a software system is viewed to be a composition of assemblies
(subsystems). An assembly is an integrated collection of parts. A part corresponds to an
information hiding module!? and includes an abstract interface, implementation, test, and
documentation facets. ' :

1.1 Overview

Conventionally, a reuse repository has been thought of as a database of software components
that are to be used either directly or with minor modification. Such an approach, while
making significant software reuse possible, fails to make such reuse practical. This failure is
attributable to the conflicting needs of the extraction, selection, and adaptation activities.

An abstraction-based reuse repository addresses these difficulties with a unified solution.
This solution derives from the observation that a set of software components that satisfy
similar needs constitute a software component family. A significant aspect of reusing a
component conventionally is the modification of the component in minor ways to suit
particular needs (i.e., the transformation of one family member into another). If, instead of
starting with individual family members (i.e., component instances), it is possible to start with
an abstract description of the entire family, then all possible family members could be derived
directly without this transformation between members. Such a derivation is in fact possible
given abstract descriptions in the form of ‘metaprograms’ that explicitly distinguish shared
traits of family members from differentiating traits. From this basis, a view of reuse
repositories results in which abstractions populate a taxonomy of constructable components
and component instances are delivered automatically as instantiations of abstract component
families.

1-1

2. A Current Model of Reuse Repositories

The conventional model for software reuse is based on the assumption that it is more
productive to take an existing component which is a close-fit and modify it for reuse than itis
to build from scratch. Under this model, utilizing software from a reuse repository
(Figure 2-1) depends on three activities: extraction, selection, and adaptation. Extraction is
the process by which the contents of the repository are rapidly searched to find a set of
candidate software components such that each is suitable to some degree for the intended
use. Selection is the process by which the applicability of each candidate component is
analysed in detail and evaluated so that the most suitable component may be reused.
Adaptation is the process by which a selected component is reliably modified to suit the

intended use exactly.
repository
PR
] e

H
1 .
=
e

R B :
' |
Figure 2-1: Conventional Reuse I

Repository Model

2.1 Assumptions of the Model

There are several important assumptions underlying this model:

. reusable components are explicitly stored as discrete entities analogous to (a
set of) files
. there exist a classification scheme and a set of attributes that characterize any

component such that the extraction decision does not require detailed scrutiny
of components

. the number of components identified in the extraction process will be small
enough to allow a final selection to be based on detailed analyses of candidate
components

. there will be enough variety among the available components so that the effort
for adaptation will be significantly less than the effort for implementation from
scratch

2.2 Problems with the Model

Assuming that only explicitly stored components will be available from a repository is
impractical and inefficient given the reality that a useful repository must make an enormous
number of components and component variations available. This assumption is fundamental
to the opportunistic (scavenging) model of repository populating wherein components are
taken as-is from existing programs. To keep the cost of adaptation significantly below that of
creation from scratch, the repository must provide sets of functionally similar components
that vary in well-defined ways corresponding to the actual, future needs of users. Without
such variety, the cost of adaptation will easily become unacceptable and therefore fail to
make reuse sufficiently economical. These two assumptions together result in the need for an
extremely large number of components that would be costly in storage costs and require a
complex classification scheme and attribute set to make extraction manageable.

On the other hand, a large repository of similar components could make the selection process
too costly; extraction must produce a very small number of candidate components, preferably
one, for the selection activity to be feasible. While restricting the application domain of a
repository could reduce the necessary storage space and reduce the cost of the extraction
activity, it cannot reduce the costs of selection or adaptation if either requires that a
component be fully understood in detail.

While it is possible to imagine a sufficiently complex classification scheme and attribute set to
support a large repository, there does not seem to be an adequate, existing categorization.
Taking such a categorization for granted, classifying an arbitrary component would be
difficult and error-prone. This suggests that reusable components should be designed
initially to fit into such a categorization.

The problems of the conventional repository model lead us to the conclusion that an
adequate repository must represent components in such a way that extraction produces only
one (abstract) candidate representing a component family. A set of such components
constitutes a family such that adaptation consists primarily of a set of prescribed decisions that
result in the ‘selection’ (through an instantiation mechanism) of exactly the needed
component. Such a repository will be referred to as an ‘abstraction-based’ reuse repository.

3, Conceptual Foundations of Abstraction-Based Reuse

Certain principles that are known to improve the quality of software have correspondences
for effective reuse. When designing software, it is known that the cost of change can be
reduced if anticipated changes in the design are hidden as secrets of information-hiding
modules. Since all conceivable changes cannot be equally easy, the quality of the design is
determined by the degree to which actual changes correspond to anticipated changes.
Similarly, in reuse, the cost of reusing a component can be reduced if anticipated variations in
its design are abstracted as decisions that the reuser can make to adapt the component to
different needs. Much of the same discipline applies in design for reuse as in design for
change. By making assumptions and design decisions explicit, there results a basis for making
judgments about which conceivable variations are more or less likely across a family of
components. -

The concept that structuring information-hiding modules into a hierarchy helps a developer
locate and understand modules!#also applies to structuring of reuse repositories. In order to
locate and understand a reusable component without undue effort, the reuser needs a
conceptual model of what components are available and what their capabilities are.

The principle of separation of concerns applies in reuse to suggest the idea that the
characteristics of a family be distinguished as common or differentiating. Common (stable)
characteristics are subsumed by the abstraction of the family while differentiating (varying)
characteristics are represented as parameters of variation on that abstraction. This is
analogous to the creation of abstract interfaces to define the common features of 2 family of
implementations and the identification of secrets that represent dimensions of variability
among the implementations. Just as hidden decisions are easier to change, so are variable
decisions.

Dijkstra® first articulated the view that program design should be concerned with the
characteristics of a software family and not just a currently required program instance. This
was a basis for the concept of stepwise refinement of programs. Parnas!? extended this view to
establish the concept of abstract module specifications as characterizing a family of
implementations, each derived through a process of stepwise refinement. Both of these
concepts of family were concerned primarily with how a program could be designed to
facilitate anticipated changes in program requirements.

We go further to suggest that there is a concept of design families that can facilitate
anticipated variations in requirements among programs that are conceptually similar and
reasonably characterized as constituting a family of designs. This is not to suggest that the
nature of variations among a family of programs is essentially different from that of likely
changes as individual programs evolve; instead, this is an attempt to define a concept for
describing component families in such a way that likely variation decisions can be made at the
time of component reuse without requiring detailed selection and adaptation activities.

3-1

3-2

4. Abstraction-based Reuse Repositories

The abstraction—based model for reuse repositories is based on the premise that reuse will be
productive only if there exists an integrating concept of component families from which
specific components can be automatically derived. We go further to characterize a family of
component designs that vary according to a set of decisions that are deferred until an instance
of the family is needed, when a basis exists for resolving the decisions to meet specific needs.
The decisions control the composition (using sequencing, conditionals, iteration, and nested
instantiations) of fragments to form concrete instances that embody the decisions.

Abstraction is essential for practical reuse repositories. If only explicitly stored components
are retrievable from a repository, there will be a large cost either for component storage space
or for adaptation of each component before reuse. If implicitly stored components are
retrievable, the storage space is reduced; if an implicit component definition is an abstract
description of a component family, the adaptation cost is reduced as well.

In the proposed model of reuse (Figure 4-1), acquiring a component is reduced to two
activities: family selection and instantiation. The retrieval of a component starts with the
identification of a family. The set of families is organized into an information-hiding
hierarchy which is traversed top-down to identify the appropriate component family that
conceptually includes the required component. Associated with each family definition is a set
of family-specific traits that provide differentiation criteria corresponding to a set of
prescribed decisions (the sets of Dy in Figure 4-2) whose resolution is sufficient to
distinguish any two family members.

4-1

N
%

repository
N o

N [
\ P S
/ EE— i
= ‘
/ i

|

/ |

Figure 4-1: Proposed Reuse
Repository Model

{D1ir Dgiy = Dgi} = pi

-

-

“
{Dyj D2js oo Dp;} -~

Pj

Figure 4-2: Instantiations of a
Family P

4-2

5. Supporting Abstraction-Based Reuse

There are three elements necessary to the support of abstraction-based reuse:

. a taxonomy of reuse families (an information-hiding hierarchy);

. a notation for the composition of a family description out of component
fragments;

. a mechanism for the instantiation of components from family descriptions.

The taxonomy provides the user with a conceptual model that Organizes access to components
in an understandable way. Without such a taxonomy of abstractions, users will not have an
adequate sense of what components are available or how a design should be influenced to
effectively exploit available components. S L

The notation for family description is a ‘metaprogramming’ notation. It provides a medium
for programming the construction of components operating on component fragments and
decision guidance (i.e., instantiation parameters).

The instantiation mechanism is a translator of the metaprogramming notation. It is the
equivalent of a conventional programming language macroprocessor generalized and
tailored to the domain of component definitions.

51 Metaprogramming

The representation of a component family is an abstraction of the representation of a
software component. A family is represented through the parameterized composition of
software component fragments. Metaprogramming is the construction and instantiation of
family descriptions using this representation. Figure 5-1identifies the major constructs of a
metaprogramming notation. A family is described by a metaprogram definition; an instance
of the family is any literal fragment that can result from the complete instantiation of that
definition. Formal parameters may be literal fragments (for substitution through
instantiation), sequences of fragments (for iterations), structures of fragments (for
substitutions or control of alternations), or instantiations. Formal parameters may have
associated constraints to prevent invalid instantiations.

Fragment composition is analogous to the process that software implementors generally
follow in constructing a component. A component family is characterized asan abstraction of
a set of instances that differ according to decisions sufficient to discriminate among the
instances.

Figure 5-2 is a simple example of how a family and instances might be characterized
abstractly. Itisimportant to note that implementation decisions are not made explicitly by the
reuser; particular decision combinations may result in very different component designs or
implementations but this is determined by the reusable component’s implementor.

Construct Purpose

sequencing a construction for
concatenating patterns

alternation a construction for choosing
among alternate patterns

iteration a construction for repeating
a pattern

definition creation of a named,
parameterized pattern

instantiation application of actual

parameters to a pattern
literal fragment a pattern containing no
meta-constructs

Figure 5-1: Constructs of a Metaprogramming
Notation

Family: ordered collection data types
Deferred Decisions:
(1) accessibility (FIFO, LIFQ, indexed)
(2) element type
(3) capacity (infinite or bounded:integer)

Instance: infinite queue of integers
Resolved Decisions:

(1) FIFO

(2) integer

(3) infinite

Instance; stack of 50 ‘activation records’
Resolved Decisions:

(1) LIFO
(2) ‘activation record’
(3) bounded:50

Figure 5-2: Sample Family/Instances
Description

5-2

6. Generalizing Existing Software for Reuse

The metaprogramming process ideally supports design for reuse wherein anticipated
variations among a family of components guide adaptation capabilities. This process can be
applied as easily to the generalization of existing, proven software that can be reused if
generalized after-the-fact to support needed variations. The key constraint is that
assumptions and decisions that distinguish the component from other variations must be fully
understood. This can be much harder starting with an existing component for which such
variation was not anticipated at the beginning.

An analogous situation occurs when a family needs to be instantiated in a way that was not
anticipated. Although the family could be instantiated for anticipated decisions and then
adapted as in a conventional model of reuse, the abstraction-based model requires instead
that the family definition be extended to accommodate other, future occurrences of the same
variation. Since perfect anticipation of all conceivable variation isimpossible, such situations
cannot be avoided. The attempt, however, to anticipate even some variation leads to explicit
statements of assumptions and decisions that make accommodation of new dimensions of
variation less error-prone.

6-2

7. Constructing Systems From Components

With abstraction-based reuse, the construction of systems is largely the composition of
component family instances. There are three methods of composition that are useful:
uses—structure~based, instantiation-determined, and invocation-based.

The uses structure! for a component defines which other components are needed (from the
reuse repository) for it to be complete. The implementor of a component definition both
controls the composition and determines the characteristics of other, nested components,
guided by the parameters to the defined component’s instantiation.

The formal parameters of a metaprogramming definition may allow the substitution of
particular component family instantiations in the instantiation of the definition. The
composition is controlled by the implementor of the definition, but the reuser determines the
characteristics of the substituted component supplied to complete the instantiation.

Invocation-based composition is the construction of a program that invokes interface
facilities of component family instantiations. The reuser, in this case, controls both how
nested components are composed and the characteristics of those components.

7-2

8. Related Work

There are several instances of formalization of aspects of abstraction-based reuse as
advocated here. Goguen® and Dershowitz® give the same emphasis to the importance of
abstraction. Lenz!® describes a macro-processor-based, building block approach which'is
somewhat more limited but philosophically very similar to our approach. Bassett? and
Polster’S describe approaches that emphasize the composition of fragments, as in
metaprogramming; the ‘cliches’ of Waters!? are similar but emphasize generalization of
instances through the introduction of ‘role’ placeholders. The fragment composition
mechanisms of metaprogramming are similar in concept to the FP functional forms of
Backus®.

Transformational implementation approaches to automatic programming, such as Fickas’,
have some of the flavor of metaprogramming but tend to emphasize modelling of the process
of program creation/composition rather than the modelling of the form and content of
products to be created. Object-oriented languages support a generalization/specialization
approach to program reuse, as described in J ohnson’.

Application generators® are similar to metaprogramming in that instances may be derived by
tailoring and composing fragments. Levy!! outlines an economic analysis that supports the
use of an application-generator-packaged metaprogramming method.

Previous experience8 using a metaprogram notation for family definitions, organized into an
information-hiding hierarchy, and an associated instance generator as an instantiation
mechanism demonstrated viability and effectiveness in facilitating software reuse. This use
enabled the construction and use of a prototype, domain-independent application
generation environment that showed significant (but unquantified) promise for increasing
productivity and reliability.

8-2

9° Future Direction

The Sofrware Productivity Consortium was established to seek significant improvements in
software development productivity and product reliability. Software reuse has been
identified by Pyster!é as a key factor in the capabilities of an software development
environment to achieve these goals. A part of this effort will be a further evaluation of the
concept of component families and abstraction-based reuse.

9-2

10.

10.

11.

12.

13.

14.

15.

16.

17.

18.

References

John Backus, “Can programming be liberated from the von Neumann style?”,
Communications of the ACM 21, 8 (August 1978), 613-641.

Paul G. Bassett, “Frame-Based Software Engineering”, IEEE Software 4, 4 (July 1987),
9-16.

Ted Biggerstaff and Charles Richter, “Reusability Framework, Assessment, and
Directions”, IEEE Software 4, 2 (March 1987), 41-49.

J. Craig Cleaveland, “Building Application Generators”, [IEEE Software 5,4 (July 1988),
25-33.

Nachum Dershowitz, “Program Abstraction and Instantiation”, ACM Transactions on
Programming Languages and Systems 7, 3 (July 1985), 446-477.

E. W. Dijkstra, “Notes on Structured Programming” in Structured Programming, O. J.
Dahl, E. W. Dijkstra., and C. A. R. Hoare, Eds,, Academic Press, London, 1972.

Stephen F. Fickas, “Automating the Transformational Development of Software”, IEEE
Transactions on Software Engineering SE-11, 11 (November 1985), 1268-1277.

Joseph A. Goguen, “Parameterized Programming”, IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), 528-543.

Ralph E. Johnson and Brian Foote, “Designing Reusable Classes”, Journal of
Object-Oriented Programming 1, 2 (June/July 1988), 22-35.

Manfred Lenz, Hans Albrecht Schmid, and Peter E Wolf, “Software Reuse through
Building Blocks”, IEEE Sofitware 4, 4 (July 1987), 34-42.

Leon S. Levy, “A Metaprogramming Method and Its Economic Justification”, JEEE
Transactions on Software Engineering SE-12, 2 (February 1986), 272-277.

David L. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules”,
Communications of the ACM 15, 12 (December 1972), 1053-1038.

David L. Parnas, “On the Design and Development of Program Families”, JEEE
Transactions on Software Engineering, SE-2 (March 1976), 1-9.

David L. Parnas, Paul C. Clements, and David M. Weiss. “The Modular Structure of
Complex Systems”, IEEE Transactions on Software Engineering, SE-11,3 (March 1985),
259-266.

Franz J. Polster, “Reuse of Software Through Generation of Partial Systems”, JEEE
Transactions on Software Engineering SE-12, 3 (March 1986), 402-416.

Arthur Pyster, “The Synthesis Process for Software Development”, Software
Productivity Consortium, November 1988,

Richard C. Waters, “The Programmer’s Apprentice: A Session with KBEmacs”, IEEE
Transactions on Software Engineering SE-11, 11 (November 1985), 1296-1320.

Grady H. Campbell, Jr., “Abstraction-Based Environments”, Software Architecture &
Engineering, Inc., April 22, 1988.

10-1

10-2

